Are there foreseeable applications of genomic medicine for the management of neuropsychiatric conditions?

Angus Clarke, Medical Genetics, Cardiff University, Wales
“Are there foreseeable applications of genomic medicine for the management of neuropsychiatric conditions?”

Discuss!
Plan

• Personal perspective on ‘genetics and psychiatry’
• Making a genetic diagnosis
• Making use of a diagnosis
 – syndromic diagnosis or a unique diagnosis
• Rett syndrome as an example
A perspective on the history

- Recording family histories
- Attempts to measure heritability
- Genetic linkage studies in large families
- Mini-linkage studies: allele sharing and transmission studies in ‘familial clusters’
A perspective on the history

Association studies in sporadic cases

de novo mutations in sporadic cases
Where is this leading?

- Diagnosis => explanation, prognosis, clarity about reproduction
- Informed health care, health surveillance and epidemiology
- Opportunities to understand pathology and (perhaps) develop rational treatments
Family History

- Documenting specific inherited causes of neuropsychiatric and neurodevelopmental disorders
- Mode of inheritance
- Description of phenotypes, especially syndromic, indicating possible mechanisms
Heritability

• $H^2 = G^2/P^2$

• Heritability is not a fixed, biological entity but depends upon (varies with) the environment

• Concept has been (is being) abused

• Consider ‘intelligence’

• How ‘fine-grained’ is the environment?
Heritability

• Measures of heritability - usually from twin studies - may be ‘correct’ but misleading, with values of $H^2 \sim 0.5-0.8$

• Identifying polygenes and accounting for heritability in Drosophila (Trudy McKay)

• To what extent is the high level of polymorphism maintained actively by selection?

• The flawed notion of single best allele
Linkage studies in Mendelian disorders

• Tracking inherited disease by using the best available markers (sites of genetic variation)
• Good at identifying genes ‘for’ Mendelian disorders
• Tuberous sclerosis (TSC1, TSC2), fragile X (FRAXA), ...
• Insights into disease mechanisms ...
Chromosome Studies

- Trisomies/Monosomies
- Deletions, duplications, etc ...
- Convergence with molecular studies => imprinting (e.g. Angelman vs Prader-Willi)
- FISH to identify specific sites at higher resolution than light microscopy - Williams syndrome, 22q11 deletion, del 1p36,
- array Comparative Genomic Hybridisation (aCGH) as successor technology
Loose family clusters

• Genes or gene regions shared by affected or transmitting members of a family
Genome Wide Association Studies (GWAS)

• Allele-sharing between sporadic ('unrelated') cases
• Common Disease, Common Variant (CDCV) model of the common, complex disorders
• Some pointers to schizophrenia, autism, etc ...

Common = Ancient

- Necessarily ancient variation
- Necessarily weak effects
- Accounts for only a small proportion of the genetic contribution to most disorders
- Heritability may be 0.5 or more but these studies only account for ~10-15% of H^2
- => part of the cause of the ‘missing heritability’
Or modern and (individually) rare?

• Neurodevelopmental disorders and psychiatric disease often arise from *de novo* genetic change
 – aCGH - Copy Number Variants
 – high throughput (genomic) sequencing
 (DGCR2 - within the 22q11 region)

• These *de novo* mutations are of high penetrance, so (usually) concordant in MZ twins and discordant in DZ
• Nature Genetics September 2012

• **Increased exonic de novo mutation rate in individuals with schizophrenia**
 • pp860 - 863; Simon L Girard et al
 • and:
 • Exome sequencing supports a *de novo* mutational paradigm for schizophrenia
 • pp864 - 868; Bin Xu et al
Keep an open mind

- H^2 will appear to be high - BUT - this should **not be taken to** support the CDCV model

- Missing heritability’: partly GxG and GxE interactions

- plus **epigenetic** influences (including Predictive Adaptive Responses)

- No ‘single best allele’ - always provisional and contextual
Achieving a diagnosis

• When will patient management be modified by specific, molecular diagnosis?
 – Down; Noonan; 22q11; 1p36;

• UVs - variants of unknown significance on aCGH or NGS

• Incidental findings from sequencing?
Value of the Findings

• Some shared factors predispose both to bipolar disease and schizophrenia

• => implications for disease taxonomy (contra Kraepelin...)

• Predictive/Susceptibility Testing?: knowledge of one’s (genetic) risk could in itself be an (environmental) risk and likely to increase anxiety / ‘expressed emotion’
Rett Syndrome

• Lessons for genomic neuropsychiatry
Career of a Diagnosis

- Recognition of a clinical entity
- Narrow diagnostic criteria =>
- Progress in recognising (+/- understanding) the underlying pathology
- Recognition of wider range of phenotypes associated with same pathology
- Appropriate clinical indications for further investigation
Career of Rett Syndrome

• Recognition of “cerebral atrophy with hyperammonaemia” by Andreas Rett 1966
• English language publication 1983 by Hagberg et al
Career of Rett Syndrome

• Recognition of “cerebral atrophy with hyperammonaemia” by Andreas Rett 1966
• English language publication 1983 by Hagberg et al
• Diagnostic criteria formalised and then progressively revised (latest 2010)
Initial Diagnostic Criteria

- Normal development to 6 months
- Developmental stagnation
- Regression - social contact, hand use
- Hand stereotypies
- Recovery of social contact
- Persisting profound cognitive impairment
- Gait and truncal ataxia
- Absence of other neurodevelopmental problem
- (Only girls)
Other associated features

- Muscle tone, including spasticity in legs
- Ventilatory rhythm
- Vasomotor disturbances including cool, atrophic feet
- Seizures
- Scoliosis
- Impaired growth
Rett syndrome is primarily a **clinical** diagnosis

with a highly characteristic timecourse and evolution,

although most cases associated with mutations in *MECP2* gene at Xq28
Degrees / Variants of Rett Syndrome

- Recognition of clinical features before 6 months in (otherwise) classic cases

- Variant / Atypical forms
 - Forme fruste (late stagnation, no regression)
 - Preserved speech (Zapella)
 - Congenital onset (no regression)
 - Early onset of seizures (Hagberg)
 - Angelman-like
 - Male cases (some with 47,XXY; some 46,XY)
Search for genetic basis

• X-linked dominant, male-lethal disorder would account for unusual pattern of occurrence
 – Sporadic
 – Occurring only in females
Search for genetic basis

- X-linked dominant, male-lethal disorder could account for unusual pattern of occurrence
 - Sporadic
 - Occurring only in females
- Gender bias in (high) mutation rates
 \[\Rightarrow\] a better explanation
Search for genetic basis

• X-linked dominant, male-lethal disorder would account for unusual pattern of occurrence
 – Sporadic
 – Occurring only in females
 – Variability between MZ twins

• Gender bias in (high) mutation rates
 => a better explanation

• Wide clinical variability of same mutation from X inactivation
FAMILIAL RETT SYNDROME: SISTER - SISTER PAIRS
Search for genetic basis: mainly red herrings

• Cytogenetic “clues” … t(Xp;A) x 2
• Uncertain significance of common ancestry in Swedish genealogy cases
• Linkage analysis difficult
 – Few families
 – Familial cases perhaps atypical
 (criteria relaxed ??)
• Xq28 a likely region
 – Amir et al 1999 => MECP2 gene
MeCP2 Protein: Adrian Bird 1992

• Already implicated in repression of transcription via methylated CpG groups
MeCP2 Protein: Adrian Bird 1992

• Already implicated in repression of transcription via methylated CpG groups

• **Rapid** progress in the molecular biology

• **Steady** progress in diagnostic utility

• **Slower** progress in understanding the pathogenesis

 – or moving to effective treatments
Rett syndrome is (usually) caused by mutations in \textit{MECP2}

- Methyl-CpG-binding protein 2
- Global transcription repressor
- Locus at Xq28

\cite{Amir1999}
A loose correlation between the mutation and the disorder

- truncating vs missense mutations
- early truncating vs late truncating mutations
- some common mutations associated statistically with greater or lesser severity
 - R133C and C-terminal deletions milder
 - R270X more severe
Large deletions in MECP2

Exon 1 & 2 (n=3)
Exon 3 & 4.1 (n=3)
Exon 3 & 4 (n=3)
Exon 3 – 4.3 (n=5)
Exon 4.1 - 4.3 (n=1)
Exon 4 (n=1)
Exon 4.2 (n=1)
Exon 4.2 - 4.3 (n=1)
Exon 4.2 - 4.4 (n=1)
Exon 4.3 (n=1)
Exon 4.3 – IRAK1 (n=1)
Severe Rett syndrome

• TRD-NLS mutations more severe
 – Floppy
 – Immobile
 – Often no hand use
 – Microcephaly
 – Severe scoliosis
 – Poor health
 – Increased mortality
Mild Rett syndrome

- Walk
- Swim
- Ride a bike
- Talk
- Use hands – self-feed, write
- Better growth
- Greater survival
- But significant learning disability
How do the mutations cause the disease?

• ?? MeCP2 deficiency => ~2 fold up-regulation of many genes (Ballestar et al 2005)

• Rett syndrome is a disease of “chromatin configuration” that “should” have global consequences
 – hard to understand how mutation leads to the very specific disease phenotype
MeCP2 target genes

- **UBE3A/GABRB3** (Samaco *et al* 2005, Makedonski *et al* 2005) related to Angelman phenotype
- **BDNF** (Chen *et al* 2003, Martinowich *et al* 2003) neuronal plasticity, eating behaviour
- **DLX5** (Horike *et al* 2005) silent chromatin loop, GABA synthesis
- **FMR1** (Harikrishnan *et al* 2005)
- **Hairy2a** (Stancheva *et al* 2003)
- Glucocorticoid response elements
But there may be no (very) specific targets

- MeCP2 binding is proportional to methylation at CpG groups
- Binding of MeCP2 is not concentrated at promoter regions or CpG islands
- Levels of illegitimate (‘nonspecific’) transcription is raised in *MECP2* mutant mice – Adrian Bird’s lab
Diagnostic Applications of *MECP2* testing

- Classical Rett Syndrome
 >90% mutations

- ‘Atypical’ Rett syndrome
 50% mutations

- Early seizure variant
 <10% mutations, none with infantile spasms
Diagnostic Applications of \textit{MECP2} testing

- Classical Rett Syndrome
 >90\% mutations

- ‘Atypical’ Rett syndrome
 50\% mutations

- Early seizure variant
 <10\% mutations, none with infantile spasms

- Is the mutation pathogenic?
 – \textit{de novo} ? synonymous ? conserved ?
 – present in healthy male ?
The complexity is enormous

- Coding sequence variants in healthy newborns
- Variation in transcription: not only the two isoforms, also extension at 5’ and 3’ ends
- Conserved sequences in the 8.5 kb 3’UTR and intron 2
- Silencers, enhancers and miRNA binding
Increase in MECP2 dosage

- Cognitive impairment
- Hypotonia then spasticity
- Absent speech
- Seizures
- Susceptibility to infection

(not all features from MECP2 dosage alone)
Specific Mutations

• Some associated with non-syndromic XLMR (?)

• A140V => distinct phenotype in males
 – Problems with development and behaviour
 – Hypotonia and Seizures

• Later:
 – Parkinsonism
 – Macro-orchidism
 – Spasticity
Tissue- and Cell-type specific expression of MECP2

• Apparent from conditional mutations with a range of different promoters
• Guy and Bird: reversal of pathology in the Cre-lox Mecp2 +/- mouse
Family Consequences of Mutation Testing for RTT

• Confirmation of diagnosis
 – Reproductive confidence in face of mosaicism
 – But still an emotional kick

• “Disconfirmation” of diagnosis
 – An anomalous category
 – A different emotional kick

• “Disconfirmation of normality” when MECP2 mutation found in absence of RTT
Diagnostic Test => 2 x 2 Table

<table>
<thead>
<tr>
<th>Clinical assessment</th>
<th>Mutation Test</th>
<th>Test Positive: mutation found</th>
<th>Test Negative: mutation NOT found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical diagnosis: typical or ‘atypical’ case of RTT</td>
<td></td>
<td>expected</td>
<td>! New and anomalous</td>
</tr>
<tr>
<td>Clinical diagnosis: NOT typical of RTT</td>
<td>! New and anomalous</td>
<td></td>
<td>expected</td>
</tr>
</tbody>
</table>
No (MECP2) mutation ? …
No MECP2 mutation? …

- Look harder in MECP2 (promoter, 3’UTR, …)
- In the mouse, duplications of MECP2 in males associated with some features of RTT
- In boys, duplications of Xq28 associated with delay (and ? some features of RTT)
 - Duplications including MECP2, filamin A, …
- In girls, CDKL5 gene disrupted in girls with infantile spasms and ? RTT or autism
 - Mutations in 3/20 girls with early seizure variant of RTT, including infantile spasms (15%)
Two patients with $CDKL5$ mutations

- 2/13 (15%) girls with seizures in the first 6 months of life had a novel mutation in $CDKL5$
• Presence of CDKL5 results in phosphorylation of MeCP2, releasing it from the methylated CpGs – CDKL5 mutations amplify effects of MeCP2
Pathogenesis

What could plausibly count as an “explanation” of RTT pathogenesis?
Pathogenesis

• Descriptive explanations
 Pattern recognition
 = natural history

• Mechanistic / Linear explanations
 A => B => C => D; upstream and target loci
 = science

• Systemic explanations
 Complex web of interactions; neuronal plasticity
 = ? despair or reality ?
Complex Causation

• Generalised dysregulation of cell function: How could this account for the illness?

• Plasticity / substitutability of CNS cell functions alters during development.

• Ability to mask dysfunction in ~50% of neurons may be impaired as plasticity declines
How was RTT not “spotted” until 1966?

- 6-12 months: “She’ll catch up”
- Acute regression
 - degenerative cerebral disease
 - undiagnosed encephalopathy
 - childhood psychosis or autism
- Dystonic, ataxic or diplegic cerebral palsy; microcephaly and epilepsy

Recognition of the temporal pattern
"Early concerns"

Systemic disease
Non-progressive intellectual impairment
Dysmorphism – dx by genetic test or opinion
Regression – Rett syndrome
 - severe autism
 - diagnosis by biochemical methods
 Leigh’s disease
 - diagnosis by MRI
 Brain tumour
Neurological problem – seizures
 - microcephaly
 - cerebral palsy
Socio-emotional problem
the later diagnostic landscape ...

cerebral palsy
post-encephalitic
microcephaly, delay, spasticity
MATURE SYNDROME
syndromic disorders
RETT SYNDROME
Angelman
severe autism
severe epilepsies
West’s and
MECP2 diagnostic landscape

"MECP2 disease"

(UBE3A)
Angelman syndrome

forme – mild – CLASSIC – severe – early - congenital
fruste RTT RTT RTT fits onset
(no regression) (with regression) (no regression)

infantile spasms
(CDKL5)
(TSC1/2)
(ARX) etc ..
The Jigsaw of Neurodevelopmental Disease

- Mutations in *MECP2* can be associated with classic or atypical RTT, non-RTT, or normal female phenotypes
- Mutations at other loci (*CDKL5*) result in related disorders
Interventions

• How to replicate the “cure” seen in the Guy/Bird mouse?

• Modify neurogenic amines: desipramine, fluoxetine

• Modifiers of γ-ergic neuronal activity

• Agents to increase BDNF

• IGF-1 action on growth of synapses

• Reverse tissue hypoxia

• Rebreathing to reduce effects of hyperventilation
Towards effective treatments ...

• Physiological studies in mice (Abdala et al PNAS 2010) suggest 5HT1A agonist plus GABA reuptake inhibitor can correct respiratory disorganisation

• Suppressors of nonsense mutations (readthrough agents, e.g. gentamicin) *may* lead to major benefits (... or not)
Towards effective treatments ...

• Gene therapy?

• Reactivate the inactivated X??
Treatments for other conditions

- Therapeutic guidance - choice of drugs for the individual
- If deletions/duplications of whole exons, antisense oligos may correct the reading frame (as in DMD)
Lessons (1)

• Identifying genetic basis of developmental or behavioural disorder can be of value to the family
 – explanation
 – prognosis
 – genetic counselling

• Establishing genetic basis allows natural history studies to begin

• Many incidental findings: confirming a mutation as pathogenic may be difficult

• Some ‘incidental’ findings will be important
Lessons (2)

- **GxG and GxE interactions** may take decades to sort out.
- **Identifying genetic basis of developmental or behavioural disorder** can give insights into disease mechanisms:
 - animal models and treatment trials
 - opportunities for effective treatment
- **Treatments** may depend upon the mutation.
Some further reading

