Lithium augmentation
Tortoise or hare?

David Cousins
Director, Newcastle Magnetic Resonance Centre
Newcastle University UK
ACKNOWLEDGEMENTS

COLLEAGUES AND COLLABORATORS
Andrew Blamire
Fawzi Boumezbeur
Carly Flowers
Pete Thelwall
Fiona Smith

FUNDING SOURCES
MRC Clinician Scientist Fellowship
EU Horizon 2020 programme

CONFLICTS OF INTEREST
Honorarium from Lundbeck for educational activities paid to main employer, Newcastle University
OVERVIEW

THIS PRESENTATION WILL COVER

• Lithium use in major depressive disorder
• Early observations to practice guidelines
• Mechanisms and models of onset of action
• Future directions
MAJOR DEPRESSIVE DISORDER

- High prevalence and often recurrent
- Substantial morbidity and mortality
- Only 40-60% of patients respond to their initial antidepressant monotherapy

If there is no (or minimal improvement) with initial treatment, typical guideline recommendations include:
- Dose increase
- Switching antidepressants
- Augmentation/combination treatment
A NOTE ON STRATEGIES

COMBINATION
Two or more antidepressant drugs taken together

AUGMENTATION
Antidepressant drug together with a ‘non-antidepressant drug’

ACCELERATION
Simultaneous initiation of two drugs to hasten response
LITHIUM: ACUTE ANTIDEPRESSANT EFFECTS

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparator</th>
<th>N</th>
<th>Duration (weeks)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendels 1972</td>
<td>Desipramine</td>
<td>24</td>
<td>3</td>
<td>Lithium = desipramine</td>
</tr>
<tr>
<td>Watanabe 1975</td>
<td>Imipramine</td>
<td>45</td>
<td>3</td>
<td>Lithium = imipramine</td>
</tr>
<tr>
<td>Worrall 1979</td>
<td>Imipramine</td>
<td>29</td>
<td>3</td>
<td>Lithium > imipramine</td>
</tr>
<tr>
<td>Khan 1981</td>
<td>Amitriptyline</td>
<td>25</td>
<td>3</td>
<td>Lithium = amitriptyline</td>
</tr>
<tr>
<td>Arieli 1981</td>
<td>Clomipramine</td>
<td>33</td>
<td>3</td>
<td>Lithium = clomipramine</td>
</tr>
<tr>
<td></td>
<td>Placebo</td>
<td></td>
<td></td>
<td>Greater efficacy</td>
</tr>
<tr>
<td>Khan 1987</td>
<td>Placebo</td>
<td>31</td>
<td>6</td>
<td>Lithium > placebo</td>
</tr>
<tr>
<td>Linder 1989</td>
<td>Clomipramine</td>
<td>22</td>
<td>4</td>
<td>Lithium = clomipramine</td>
</tr>
</tbody>
</table>

= Comparable efficacy > Greater efficacy

Onset of action of lithium was similar to comparator drugs

Table reproduced from Bauer et al 2006
LITHIUM: ACUTE ANTIDEPRESSANT EFFECTS

PREDICTORS OF FAVOURABLE OUTCOME AS MONOTHERAPY IN ACUTE UNIPOLAR DEPRESSION

- Family history of bipolar disorder
- Mood fluctuations and ‘light’ hypomania
- Cyclothymic personality
- ‘Endogenous’ type of depression
- Early onset of illness
- Postnatal depression

LATENT BIPOLAR DISORDER?

Inoue 2011; Birkenhager 2021
LITHIUM: AUGMENTATION

Lithium Induces Rapid Relief of Depression in Tricyclic Antidepressant Drug Non-Responders

C. DÉ MONTIGNY, F. GRUNBERG, A. MAYER and J.-P. DESCHENES

Summary: Eight patients suffering from a major unipolar depression and having failed to respond to treatment for three weeks or more with tricyclic antidepressants were given lithium. All eight patients experienced a remarkable relief of their depression within 48 hours. This rapid antidepressant effect of lithium in 'treatment-resistant' patients might be due to the enhancement of the efficacy of the central serotoninergic system, unveiling the tricyclic antidepressant-induced sensitization of the serotoninergic postsynaptic receptors.
LITHIUM: AUGMENTATION

Fig 1.—Total scores on the 17-item Hamilton Rating Scale for Depression for each patient obtained before treatment (A), after a three week or more treatment with a TCA drug (B), and 2 days after the addition of lithium to their therapeutic regimens (C). Lithium was added immediately after evaluation B. The date of the evaluation (in days) is indicated in the bottom of each column. The lithium plasma concentration indicated is that obtained on the morning of evaluation C.

Fig 2.—Average scores (±s.e.m.) of the eight patients reported on the 6-item Hamilton subscale of Bech et al (Items 1, 2, 7, 8, 10 and 13) obtained before treatment (A), after a three week or more treatment with TCA (B), and 48 hours after the addition of lithium to their therapeutic regimen (C). *P < 0.001 (one way analysis of variance).

Dé Montigny et al BJPsych 1981; 138:252-256
LITHIUM: AUGMENTATION

KEY EARLY STUDIES

Heninger et al 1983
RCT of lithium added to various TCA, reporting improvement at 2 days but considered clinically significant at 7-12 days.

DéMontigny et al 1983
Argued for true augmentation rather than the antidepressant effects in three small studies.
• Confirmed rapid effect of augmentation.
• Augmentation more marked in those pretreated with amitriptyline compared to those pretreated with placebo.
• 50% relapse on discontinuation

Price LH et al 1986:
Augmentation of various antidepressants with lithium (n=84, 11 of which BD). Response in 56%, with 31% (n=26) having a marked response.
2/26 responded in 1-6 days
16/26 responded in 19-24 days
Table 2. Randomized Double-Blind Lithium Augmentation Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Subjects</th>
<th>Antidepressant Treatment</th>
<th>Lithium Dosage (serum level and Duration)</th>
<th>Response Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heninger et al (1983)(^{26})</td>
<td>14 UP, 1 BP, 12 F, 3 M, mean age = 50 y</td>
<td>Various TCAs and tetracyclics</td>
<td>900–1200 mg/d (0.5–1.1 mmol/L), 12 d</td>
<td>Decrease of 2 or more points on SCRS</td>
</tr>
<tr>
<td>Kantor et al (1986)(^{22})</td>
<td>7 UP, sex NR, mean age NR</td>
<td>Various TCAs</td>
<td>900 mg/d, 48 h</td>
<td>≥ 40% decrease in HAM-D</td>
</tr>
<tr>
<td>Zusky et al (1988)(^{23})</td>
<td>16 UP, 13 F, 3 M, mean age = 45 y</td>
<td>Various TCAs and MAOIs</td>
<td>300 mg/d first week, 900 mg/d second week, 14 d</td>
<td>Final HAM-D ≤ 7</td>
</tr>
<tr>
<td>Schöpf et al (1989)(^{28})</td>
<td>18 UP, 9 BP, 19 F, 8 M, mean age = 54 y</td>
<td>Various antidepressants</td>
<td>600–800 mg/d (0.6–0.8 mmol/L), 7 d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Browne et al (1990)(^{29})</td>
<td>14 UP, 3 BP, 10 F, 7 M, mean age = 42 y</td>
<td>Various TCAs and tetracyclics</td>
<td>900 mg/d, 48 h</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Stein and Bernadt (1993)(^{24})</td>
<td>34 UP, 27 F, 7 M, mean age = 47 y</td>
<td>Various TCAs</td>
<td>250 mg/d, 21 d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Joffe et al (1993)(^{25})</td>
<td>33 UP, 18 F, 15 M, mean age = 37 y</td>
<td>Various TCAs</td>
<td>900 mg/d (> 0.55 mmol/L), 14 d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Katona et al (1995)(^{30})</td>
<td>N = 61, polarity NR, 35 F, 26 M, mean age = 40 y</td>
<td>SSRIs and TCAs</td>
<td>800 mg/d (0.6–1 mmol/L), 42 d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Baumann et al (1996)(^{27})</td>
<td>23 UP, 1 BP, 17 F, 7 M, mean age = 41 y</td>
<td>Citalopram</td>
<td>800 mg/d (0.5–0.8 mmol/L), 7 d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
<tr>
<td>Nierenberg et al (2003)(^{4})</td>
<td>35 UP, 16 F, 19 M, mean age = 38 y</td>
<td>Nortriptyline</td>
<td>900 mg/d</td>
<td>≥ 50% decrease in HAM-D</td>
</tr>
</tbody>
</table>

Abbreviations: BP = bipolar, F = female, HAM-D = Hamilton Rating Scale for Depression, M = male, MAOI = monoamine oxidase inhibitor, NR = not reported, SCRS = Short Clinical Rating Scale, SSRI = selective serotonin reuptake inhibitor, TCA = tricyclic antidepressant, UP = unipolar.

Predominantly TCA augmentation
Lithium duration ranging from 2 to 42 days
LITHIUM: AUGMENTATION

Meta-Analysis of Lithium Augmentation Studiesa

<table>
<thead>
<tr>
<th>Study</th>
<th>Lithium, N/N</th>
<th>Control, N/N</th>
<th>Fixed Effects OR and 95% CI</th>
<th>Fixed Effects OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heninger et al (1983)26</td>
<td>5/8</td>
<td>0/7</td>
<td>23.57 (1.00 to 556.08)</td>
<td></td>
</tr>
<tr>
<td>Kantor et al (1986)22</td>
<td>1/4</td>
<td>0/3</td>
<td>3.00 (0.09 to 102.05)</td>
<td></td>
</tr>
<tr>
<td>Zusky et al (1988)23</td>
<td>3/8</td>
<td>2/8</td>
<td>1.80 (0.21 to 15.41)</td>
<td></td>
</tr>
<tr>
<td>Schöpf et al (1989)28</td>
<td>7/14</td>
<td>0/13</td>
<td>27.00 (1.35 to 541.57)</td>
<td></td>
</tr>
<tr>
<td>Browne et al (1990)29</td>
<td>3/7</td>
<td>2/10</td>
<td>3.00 (0.35 to 25.87)</td>
<td></td>
</tr>
<tr>
<td>Stein and Bernadt (1993)24</td>
<td>2/16</td>
<td>4/18</td>
<td>0.50 (0.08 to 3.19)</td>
<td></td>
</tr>
<tr>
<td>Joffe et al (1993)25</td>
<td>9/17</td>
<td>3/16</td>
<td>4.88 (1.01 to 23.57)</td>
<td></td>
</tr>
<tr>
<td>Katona et al (1995)30</td>
<td>15/29</td>
<td>8/32</td>
<td>3.21 (1.09 to 9.48)</td>
<td></td>
</tr>
<tr>
<td>Baumann et al (1996)27</td>
<td>6/10</td>
<td>2/14</td>
<td>9.00 (1.27 to 63.89)</td>
<td></td>
</tr>
<tr>
<td>Nierenberg et al (2003)4</td>
<td>2/18</td>
<td>3/17</td>
<td>0.58 (0.08 to 4.01)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53/131</td>
<td>24/138</td>
<td>3.11 (1.80 to 5.37)</td>
<td></td>
</tr>
</tbody>
</table>

Test for Heterogeneity: $\chi^2 = 11.90$, df = 9, p = .22, $I^2 = 24.4\%$
Test for Overall Effect: Z = 4.06, p < .0001

aPooling of patients responding to augmentation therapy. Fixed effects model used.9

MORE RECENT STUDIES

Bauer et al 2013
Lithium augmentation comparable to quetiapine augmentation of antidepressants

Schindler 2007
Lithium non-significantly better than lamotrigine augmentation

Stepped treatment studies
STAR*D: 16% reached remission with lithium at step 3 of 4
Birkenhager: 59% response rate at step 2 of 4

Systematic reviews and meta-analysis
Recent publications including MMA have focused on treatment refractory depression, finding no significant effect of mood stabilisers. Only two lithium augmentation studies included.
LITHIUM AND SEROTONIN

AUGMENTATION RATIONALE

TCA were thought to increase the sensitivity of post-synaptic 5HT receptors in the forebrain whilst lithium potentiates serotonergic systems presynaptically.

EVIDENCE

Preclinical
• Acute: increases uptake of tryptophan
• Acute and chronic: enhancement of 5HT release
• Hippocampus appears particularly sensitive to the effects of lithium

Clinical
• Assessed using the prolactin response to intravenous l-tryptophan
• Acute effects consistent with original hypothesis of action
LITHIUM AND SEROTONIN

CLINICAL EVIDENCE

Healthy volunteers
• Prolactin response to L-tryptophan increased by short- and long-term administration of lithium.

Patients with depression
• Endocrine response to Li-tryptophan diminished but rectified by lithium.
 Cowen et al 1991: at 4 days and 4 weeks
 Price et al 1990: at 3 days but not 3 weeks
• Not clearly related to improvements in mood.

Medication studies
• McCance-Katz et al 1992: antidepressants (6 weeks) did not affect prolactin response to L-tryptophan, but the addition of lithium enhanced it compared to placebo.
• Walsh et al 1991: pretreatment with lithium does not attenuate the effects of gepirone ($5HT_{1A}$ agonist) in healthy volunteers.
LITHIUM AND SEROTONIN

NON-SEROTONERGIC ANTIDEPRESSANTS
Most augmentation trials studied TCA with known 5HT reuptake inhibition properties. RCT augmenting nortriptyline with lithium (900 mg/day) versus placebo for 42 days reported that lithium was not superior to placebo (Nierenberg et al 2003).

SSRI AUGMENTATION
Placebo controlled studies augmenting SSRIs
Lithium superior when added to citalopram (Baumann et al 1996) and subjects taking TCA or SSRI (Katona et al 1995).

Short term improvements with lithium not as marked when added to SSRIs compared to augmentation of TCA (Birkenhager et al 2004; Zullino 2001 review).

The SSRI class may not induce post-synaptic serotonin receptor sensitivity to the same degree as TCAs (Bijak et al 1994).
Acceleration effect of lithium revisited after an open report of 3 subjects responding in 2 weeks to the simultaneous initiation of lithium and a TCA (*Austin 1990*)

Studies are of varying quality and underpowered
In some, serum lithium levels were high and side effects marked

Nick et al 1976 not included in meta-analysis (reported significance levels only)
Meta-Analysis of Lithium Acceleration Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Mean (SD)</th>
<th>N</th>
<th>Mean (SD)</th>
<th>Random Effects SMD and 95% CI</th>
<th>Random Effects SMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lingjaerde et al (1974)</td>
<td>6</td>
<td>59.00 (15.93)</td>
<td>7</td>
<td>90.00 (15.93)</td>
<td>-1.81 (-3.18 to -0.44)</td>
<td></td>
</tr>
<tr>
<td>Januel et al (1994)</td>
<td>3</td>
<td>68.50 (5.99)</td>
<td>3</td>
<td>82.10 (5.99)</td>
<td>-1.82 (-4.19 to 0.56)</td>
<td></td>
</tr>
<tr>
<td>Ebert et al (1995)</td>
<td>20</td>
<td>14.50 (5.97)</td>
<td>20</td>
<td>17.50 (7.99)</td>
<td>-0.42 (-1.04 to 0.21)</td>
<td></td>
</tr>
<tr>
<td>Bloch et al (1997)</td>
<td>16</td>
<td>16.01 (6.72)</td>
<td>15</td>
<td>14.20 (8.02)</td>
<td>0.24 (-0.47 to 0.95)</td>
<td></td>
</tr>
<tr>
<td>Januel et al (2003)</td>
<td>68</td>
<td>14.60 (8.40)</td>
<td>73</td>
<td>17.20 (7.50)</td>
<td>-0.33 (-0.66 to 0.01)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td></td>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for Heterogeneity: $\chi^2 = 8.53$, df = 4, p = .07, $I^2 = 53.1\%$

Test for Overall Effect: $Z = 1.68$, p = .09

a Pooling of depression scale ratings at 7 to 14 days for lithium versus placebo group. Hedges’ adjusted g were pooled using DerSimonian and Laird model.10

b Percentage of baseline score shown.

Abbreviation: SMD = standardized mean difference.
LITHIUM: DURATION OF AUGMENTATION

DISCONTINUATION OBSERVATIONS
Dé Montigny 1981/83
55% relapse if lithium discontinued after 1 week
20% relapse if stopped after 1 month

DISCONTINUATION STUDIES
Bauer et al 2000
Refractory MDD (n=29) responded to lithium augmentation in open 6-week study. Following a further 2–4 weeks of stabilization, randomized to continuation of lithium (4 months) or placebo. Relapse in 7/15 placebo and 0/14 lithium treated.

Bschor et al 2002
Relapses observed during the 6 month open follow up once lithium was stopped in those previously receiving it for approximately 6 months (in Bauer et al 2000 study).

Hardy et al 1997
Placebo controlled gradual discontinuation (n=12) of lithium in elderly responders. 2/6 in each group relapsed
TRANSLATION TO GUIDELINES
Pharmacological Augmentation in Unipolar Depression: A Guide to the Guidelines

Rachael W. Taylor, Lindsey Marwood, Emanuella Oprea, Valeria DeAngel, Sarah Mather, Beatrice Valentini, Roland Zahn, Allan H. Young, Anthony J. Cleare

Background: Pharmacological augmentation is a recommended strategy for patients with treatment-resistant depression. A range of guidelines provide advice on treatment selection, prescription, monitoring and discontinuation, but variation in the content and quality of guidelines may limit the provision of objective, evidence-based care. This is of importance given the side effect burden and poorer long-term outcomes associated with polypharmacy and treatment-resistant depression. This review provides a definitive overview of pharmacological augmentation recommendations by assessing the quality of guidelines for depression and comparing the recommendations made.

Methods: A systematic literature search identified current treatment guidelines for depression published in English. Guidelines were quality assessed using the Appraisal of Guidelines for Research and Evaluation II tool. Data relating to the prescription of pharmacological augmenters were extracted from those developed with sufficient rigor, and the included recommendations compared.

Results: Total of 1696 records were identified, 19 guidelines were assessed for quality, and 10 were included. Guidelines differed in their quality, the stage at which augmentation was recommended, the agents included, and the evidence base cited. Lithium and atypical antipsychotics were recommended by all 10, though the specific advice was not consistent. Of the 15 augmenters identified, no others were universally recommended.

Conclusions: This review provides a comprehensive overview of current pharmacological augmentation recommendations for major depression and will support clinicians in selecting appropriate treatment guidance. Although some variation can be accounted for by date of guideline publication, and limited evidence from clinical trials, there is a clear need for greater consistency across guidelines to ensure patients receive consistent evidence-based care.

International Journal of Neuropsychopharmacology (2020) 23(9): 587–625
DIFFERENCES IN GUIDELINES HIGHLIGHT AREAS WHERE EVIDENCE IS LACKING

Effectiveness of lithium augmentation
All support the use of lithium, but some as second-line (APA and CANMAT).

Importance of antidepressant
Not addressed in all guidelines but BAP draws attention to the evidence being derived largely from TCA augmentation.

Determination of response
RANZCP states if no benefit observed in 7-10 days, alternatives should be considered.

Duration of treatment
Wide ranging from 4-8 weeks (APA) to 2 years or longer based on response and illness pattern. Gradual withdrawal favoured.

Continuing as lithium monotherapy
Most do not recommend this. WFSBP note potential for use in relapse prevention but lithium + AD better. RANZCP supports this if AD poorly tolerated. NICE precludes.
WHAT ABOUT THE TORTOISE?
NEUROPROTECTION AND LITHIUM

PRECLINICAL
Compelling evidence from neuronal cell and rodent studies. (Haupt 2021)

Key enzyme substrates include
- inhibition of glycogen synthase kinase (GSK-3), directly and indirectly via Akt
- up-regulation of bcl-2
- Increases neurotrophic molecules such as BDNF (via Wnt/B-catenin pathway)

Initially variously described as neuroprotective, neurogenic or neurorestorative. Capacity for adult neurogenesis remains a contested issue. Neuroprotective or neurorestorative actions would be more consistent with a delayed onset of action or prevention.

Acute effects notable, but influence on rapid improvement in mood less clear.
- Post-stroke neuroprotection established in animal models with stem cell lithium enrichment enhancing therapeutic potential via TLR-4 (Haupt 2021)
NEUROPROTECTION AND LITHIUM

CLINICAL
Observational and trial evidence in dementia
Lithium increases BDNF levels in augmentation of antidepressants in MDD
Structural MRI and MRS suggestive of protective effect in bipolar disorder
NEUROPROTECTION AND LITHIUM

CLINICAL

Observational and trial evidence in dementia
Lithium increases BDNF levels in augmentation of antidepressants in MDD
Structural MRI and MRS suggestive of protective effect in bipolar disorder

Lithium augmentation increases BDNF, though not related to response

Ricken 2013

FIGURE 1. Brain-derived neurotrophic factor serum levels increase during 4 weeks of lithium augmentation ($F_{2,81} = 5.04$, $P < 0.05$).
NEUROPROTECTION AND LITHIUM

CLINICAL
Observational and trial evidence in dementia
Lithium increases BDNF levels in augmentation of antidepressants in MDD
Structural MRI and MRS suggestive of protective effect in bipolar disorder

Lithium increases grey matter volume by 3% in bipolar disorder
Moore 2000
NEUROPROTECTION AND LITHIUM

CLINICAL

Observational and trial evidence in dementia
Lithium increases BDNF levels in augmentation of antidepressants in MDD
Structural MRI and MRS suggestive of protective effect in bipolar disorder

Lithium specific and asymptote 8-12 weeks

Lyoo 2010
IMAGING LITHIUM IN MDD

NOT COMPREHENSIVELY INVESTIGATED

Compared to bipolar disorder, the effect of lithium treatment on brain imaging measures in MDD has not been investigated.

MDD consistently associated with reduced hippocampal volumes, notably in those with recurrent illness (Schmaal et al 2016).
IMAGING LITHIUM IN MDD

NOT COMPREHENSIVELY INVESTIGATED

Longitudinal examination of hippocampal volumes with respect to response to augmentation would be valuable, given sites of lithium concentration

^7Li-MRI in bipolar disorder
Smith et al 2018

^7Li-MRI in bipolar disorder – VBM analysis 7T
Stout et al 2018
FUTURE DIRECTIONS

FUTURE AVENUES OF INVESTIGATION

• Comparison of lithium versus antidepressant augmented by lithium (Bauer 2006)
• RCT of lithium augmentation of NA/DA antidepressant (Bauer 2007)
• Imaging correlates of lithium augmentation in major depressive disorder

STUDIES CURRENTLY UNDERWAY

LITHIUM VERSUS QUETIAPINE IN DEPRESSION (LQD)
Parallel group, multi-centre, pragmatic, open-label, patient randomised clinical trial comparing lithium with quetiapine augmentation in treatment resistant depression (Marwood 2017)

RESPONSE TO LITHIUM NETWORK (R-LINK)
Longitudinal EU multi-centre study aiming to identify predictive biosignatures of response to lithium in bipolar disorder using multimodal imaging, digital phenotyping and ‘omics’ analysis.