RCPsych Psychopharmacology Committee
Robert Kerwin Prize Winning Talks

Forlenza et al. Br J Psychiatry
2019 Nov;215(5):668-674

Royal College of Psychiatrists
Virtual International Congress 2021
No conflicts of interest regarding clinical or experimental use of antidementia drugs

Funding:
• CNPq 429079-2018-4; 301629-2018-8
• FAPESP 2013-23135-9
• INCT (InBion) 465412-2014-9/14-508733
• Alzheimer’s Association NIRG08-90688
Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial

Orestes V. Forlenza, Marcia Radanovic, Leda L. Talib and Wagner F. Gattaz

Why lithium for AD?
Rationale

1) Evidence of neurotrophic & neuroprotective effects of lithium replicated in multiple experimental models

2) Extrapolations from neuroimaging in bipolar disorder and epidemiological studies

3) Rather pessimistic perspective in AD drug development pipeline towards disease modification, particularly regarding anti-amyloid immunotherapy

 – repurposed drugs: 43% of pharmacological compounds in current phase 1, 2 and 3 trials (52 drugs)\(^1\)

Biological assumption

GSK3 hypothesis of AD

- Hyperphosphorylation of microtubule-associated protein TAU
- Overproduction of amyloid-β peptide

Lithium is a potent, dual inhibitor of GSK-3β

Beyond plaques & tangles

Lithium may protect neurons against AD-specific and -unspecific insults

- Amyloid-β ↓ Neuritic plaques
- Phospho-TAU ↓ Neurofibrillary tangles

- Neurogenesis
- Synaptic plasticity
- Neurotrophic support
- Structural remodeling
- Gene regulation
- Response to injury
- Mitochondrial function
- Apoptosis and autophagy

Klein & Melton. A molecular mechanism for the effect of lithium on development. PNAS 1996;93:8455-9
Chronic lithium use is associated with lower prevalence of dementia
Chronic lithium use prevents dementia in BD

- **Lithium and risk for AD in elderly patients with bipolar disorder.**
 - Overall dementia rate: 21.4% (vs. 5-7% estimated)
 Lithium: 5%; non-lithium: 33% (p<0.001)
 - Older age: positive association with dementia (p=0.02)
 Lithium use: negative association with dementia (p<0.001)

- **Lithium treatment and risk of dementia.**
 - At least one purchase of lithium (presumably BD): higher dementia rate;
 Multiple purchases (i.e. continued use): **progressive reduction in dementia rate**
Long-term exposure to trace lithium lowers dementia rates

- **Association of lithium in drinking water with incidence of dementia.**

 Kessing et al. *JAMA Psychiatry* 2017;74(10):1005-10

 - Non-linear effect: 5-10µg/L: increase; >10-27µg/L: decrease in IRR (incidence rate ratio for overall dementia, AD and VD)

- **Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer’s disease mortality in Texas.**

 - Trace lithium in water was negatively associated with AD mortality (also with obesity and type-2 diabetes)
Lithium treatment also delivers neurotrophic effects
MRI studies in BD

- **Lithium-induced increase in human brain grey matter.**
 - Grey-matter volume increases after 4 weeks of treatment: **neurotrophic effect**

- **Large positive effect of lithium on prefrontal cortex N-acetylaspartate in patients with bipolar disorder: 2-centre study.**
 - Li-treated patients with similar illness burden had **prefrontal NAA levels similar to controls**

- **Brain age in bipolar disorders: effects of lithium treatment.**
 - Machine-learning MRI algorithm to estimate *BrainAGE* (vs. chronological age) in 504 controls; 84 BD (lithium vs. non-lithium): **Lithium users have ‘younger’ brains**
Lithium upregulates BDNF

- **Long-term lithium treatment increases intracellular and extracellular BDNF in cortical and hippocampal neurons at subtherapeutic concentrations.**
 - Chronic, low-dose lithium treatment (0.02/0.2mM) up-regulates BDNF production in primary neuronal cell culture

- **Lithium increases plasma brain-derived neurotrophic factor in acute bipolar mania: a preliminary 4-week study.**

- **Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease.**
Is lithium a candidate drug for disease modification in AD?
Clinical evidence

- **4 clinical trials of lithium in AD continuum**
 - UK, single blinded, therapeutic concentrations, 12 months moderate AD (n=22) (Macdonald et al 2008)\(^1\)
 - German-EU, single-blinded, therapeutic (0.5-0.8mM), 10 weeks, mild AD (n=71) (Hampel et al 2009)\(^2\)
 - BR, double-blinded (2 yrs) + extension, amnestic MCI (n=61) sub-therapeutic doses (Forlenza et al 2011; 2019)\(^3,4\)
 - BR, single-blinded, microdoses (300μg/day), moderate AD, 18 months (Nunes et al 2013)\(^5\)

- **1 meta-analysis (of studies 2-4)\(^6\)**

Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial

Orestes V. Forlenza, Márcia Radanovic, Leda L. Talib and Wagner F. Gattaz

- double-blind, placebo-controlled (2 yrs.)
- single-blinded extension (+2 yrs.)
- older adults with amnestic MCI (104 → 61)
- sub-therapeutic lithium doses 0.25-0.5mEq/L
- outcome variables:
 - conversion (MCI-AD)
 - functional status (CDR-SoB)
 - cognition (ADAS-Cog, neuropsychological tests)
 - peripheral markers (not shown)
 - CSF Aβ_{1-42}, total TAU, p-TAU (0, 12, 36 months)
Safety/tolerability

CSF biomarkers 1

CSF biomarkers 2

Primary outcome (clinical)

CSF biomarkers 3

Safety/tolerability

- Screened (n=106)
- Eligible (n=76)
- Randomised (n=61)

Lithium (n=31)
- Withdrawn: n=2
- Completed: n=29

Placebo (n=30)
- Withdrawn: n=2
- Completed: n=28

Duration of follow-up
- 1 year
 - Lithium: n=2
 - Withdrawn: n=2
 - Completed: n=29 (93.5%)
 - Placebo: n=2
 - Withdrawn: n=2
 - Completed: n=28 (93%)
- 2 years
 - Lithium: n=2
 - Withdrawn: n=2
 - Completed: n=27 (87%)
 - Placebo: n=3
 - Withdrawn: n=3
 - Completed: n=25 (83%)
- 3 years
 - Lithium: n=9
 - Withdrawn: n=9
 - Completed: n=18 (58%)
 - Placebo: n=9
 - Withdrawn: n=9
 - Completed: n=16 (53%)
- 4 years
 - Lithium: n=0
 - Withdrawn: n=0
 - Completed: n=18 (58%)
 - Placebo: n=0
 - Withdrawn: n=0
 - Completed: n=16 (53%)

* Compliance rate (% of baseline group)
Safety / tolerability

1. Good compliance
 - 1 year: 93% (total sample = subgroups)
 - 2 years: 85% (similar dropout rates)
 - 3-4th yrs: PBO 53% (16/30); Li 58% (18/31)

2. Good safety/tolerability profile
 - low incidence of adverse events (Li > PBO)
 - NS changes critical parameters
Safety & tolerability

Clinical message:
- Low-dose lithium appears to be safe, especially regarding renal function in an older population
- Older adults on low-dose lithium present mild impairments in daily activities due to side-effects
- Periodic evaluation of at least endocrine and renal functions is important to avoid organic lesions

Lithium vs. placebo:
- ↑ neutrophil count
- ↑ serum TSH within normal limits interaction: N.S.
- ↑ body weight n=5; 25%; mean 5.5kg
- more overall AE’s generally mild severe AE’s: N.S. incident cases DM, arrhitmia
Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial

Orestes V. Forlenza, Márcia Radanovic, Leda L. Talib and Wagner F. Gattaz

Cognitive and functional outcome after 2 years (double-blind endpoint)

- Placebo
- Lithium

Conversion (MCI-AD)

Converters:
- Lithium, n=5
- Placebo, n=9

Attrition:
- 1st year, n=4
- 2nd year, n'=5
(Li vs. Pbo, N.S.)

Functional state (CDR-SoB)

Global cognitive state (ADAS-Cog)

Delayed recall

Figure recall

Linear mixed effects model
Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial

Orestes V. Forlenza, Breno S. Diniz, Márcia Radanovic, Franklin S. Santos, Leda L. Talib and Wagner F. Gattaz

Lithium: reduction in CSF p-Tau
(interim analysis, T0 vs. 12 months)

- **Phosphorylated Tau**
 - Placebo
 - Lithium

- **Amyloid-β42**
 - Placebo: *p = 0.06*

- **Total Tau**

‘AD-signature’:
- ↓ Aβ\(_{1-42}\)
- ↑ total TAU
- ↑ p-TAU
Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial
Orestes V. Forlenza, Márcia Radanovic, Leda L. Talib and Wagner F. Gattaz

Lithium: increase in CSF α-1-42
(T0 vs. 36 months)

- Increase in CSF T-Tau but not p-Tau: suggestive of neurogenesis
- Greater effect among cases of ‘late-stage MCI’ (i.e., higher baseline CSF p-Tau)

- Increase in CSF α-1-42: suggestive of amyloid clearance from the brain
- Greater effect among cases of ‘early-stage MCI’ (i.e., higher baseline CSF α-1-42)
Conclusions

1. Lithium-treated patients: cognitive and functionally stable over 2 years
 - ADAS-Cog, CDR-SoB and memory scores

2. Reduction in CSF phospho-Tau (1 year)
 Increase in CSF Aβ_{42} (3 years)

Evidence of disease-modification?
1. **Long-term lithium: cognitive/functional benefits**
 - AD-specific? When to start? How long? Doses?

2. **Modification of AD-related CSF pattern**
 - Dephosphorylation of Tau (1 year)
 - Long-term lithium: amyloid clearance
 - Increased T-Tau *but not P-Tau* after 3 yrs: neurogenesis?

3. **Effect partially mediated by GSK-3B**
 - Tissue-specific; short duration; therapeutic window

4. **Other mediators of the lithium effect:**
 - BDNF, Tau, PLA$_2$, cytokines, mitochondria, mTOR (etc...)
• After 20 years of extensive (and expensive) experimentation, no DMT compound has yet been approved for clinical use;
• Meta-analyses also failed to support significant benefits.

What went wrong with anti-amyloid therapy?

1. Methodological (RCT design) → → Short duration? Start at preclinical?
2. Efficacy vs. Effectiveness → → Too late to clear Aβ? Wrong Aβ peptides?
3. Molecular target (Aβ peptides) → → Refine Aβ? other/multiple targets?
4. Disease model (Aβ hypothesis) → → EOAD/FAD; DS-AD / Non-amyloid?
5. Intervention reach → anti-AD or antiDEMENTIA? Multimodal approach?
Thank you!

forlenza@usp.br
Very special thank to my tutors in UK

IoP - London 1996-7

Professor Raymond Levy
International Psychogeriatric Association
IPA-Pfizer Educational Grant

Professor Anthony Mann
Section of Epidemiology and General Practice

Professor Simon Lovestone
Section of Old Age Psychiatry
Department of Neuroscience